Ballistic transport and spin-dependent anomalous quantum tunneling in Rashba–Zeeman and bilayer graphene hybrid structures

Author:

Acharjee Saumen1ORCID,Boruah Arindam1ORCID,Devi Reeta1ORCID,Dutta Nimisha1ORCID

Affiliation:

1. Department of Physics, Dibrugarh University , Dibrugarh 786 004, Assam, India

Abstract

In this work, we have studied the spin-dependent ballistic transport and anomalous quantum tunneling in bilayer graphene horizontally placed in between two Rashba–Zeeman (RZ) leads under external electric biasing. We investigated the transmission and conductance for the proposed system using scattering matrix formalism and the Landauer–Büttiker formula considering a double delta-like barrier under a set of experimentally viable parameters. We found that the transmission characteristics are notably different for up- and down-spin incoming electrons depending upon the strength of magnetization. Moreover, the transmission of up- and down-spin electrons is found to be magnetization orientation dependent. The maximum tunneling conductance can be achieved by tuning biasing energy and magnetization strength and choosing a material with suitable Rashba spin–orbit coupling (RSOC). This astonishing property of our system can be utilized in fabricating devices, such as spin filters. We found that the Fano factor of our system is 0.4 under strong magnetization conditions, while it reduces to 0.3 under low magnetization conditions. Moreover, we also noticed that the transmission and conductance significantly depend on the Rashba–Zeeman effect. Therefore, considering a suitable RZ material, the tunneling of the electrons can be tuned and controlled. Our result suggests that considering suitable strength and orientation of magnetization with moderate RSOC, one can obtain a different transmission probability for spin species under suitable biasing energy. These results indicate the suitability of the proposed system in fabrication of spintronic devices, such as spin filter, spin transistor, etc.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3