Thermodynamic analysis of a typical compressed air energy storage system coupled with a fully automatic ejector under slip pressure conditions

Author:

Zhang Yufei1ORCID,Yao Erren1ORCID,Li Ruixiong1,Sun Hao1ORCID,He Xin1ORCID,Wang Huanran1,Xu Huijuan2

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University 1 , Xi'an 710049, Shaanxi, China

2. State Nuclear Electric Power Planning Design & Research Institute Chongqing CO., Ltd 2 ., Chongqing 401121, China

Abstract

To solve the problem of energy loss caused by the use of conventional ejector with fixed geometry parameters when releasing energy under sliding pressure conditions in compressed air energy storage (CAES) system, a fully automatic ejector capable of adjusting key geometric parameters to maintain the maximum ejection coefficient by an automatic control device according to the running parameters is proposed in this paper. By establishing a thermodynamic model of a typical CAES system coupled with a fully automatic ejector, the effect of the fully automatic ejector on the system performance is studied under sliding pressure conditions. The results show that the fully automatic ejector has the most sensitive ejection coefficient with the variation of high-pressure gas pressure. The cycle efficiency and exergy efficiency of the proposed system were 56.91% and 52.64%, respectively. Compared with the coupled conventional ejector, the cycle efficiency, exergy efficiency, and output power of the system were increased by 0.93%, 0.81%, and 4.59%, respectively. The exergy loss of the combustion chamber is the largest among the components within the system, accounting for 65.2% of the total exergy loss, followed by the heat exchanger, which accounts for 13.8% of the exergy loss, while the fully automatic ejector has the smallest exergy loss, accounting for only 0.8% of the total exergy loss. When the extraction point is at the first stage of the turbine, the system cycle efficiency and external energy efficiency vary parabolically with the extraction pressure, but the system performance will change abruptly when the pressure at the extraction point approaches 1.5 MPa. The system performance index is more sensitive to the change of turbine inlet temperature than other variables. Reducing the heat exchanger heat transfer temperature difference and increasing the fully automatic ejector outlet pressure are the effective ways to improve system performance.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3