Microgram BaCl2 ablation targets for trapped ion experiments

Author:

Greenberg Noah1ORCID,Jozani Akbar Jahangiri1ORCID,Epstein Collin J. C.1ORCID,Tan Xinghe1ORCID,Islam Rajibul1,Senko Crystal1

Affiliation:

1. Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada

Abstract

Trapped ions for quantum information processing have been an area of intense study due to the extraordinarily high fidelity operations that have been reported experimentally. Specifically, barium trapped ions have been shown to have exceptional state-preparation and measurement fidelities. The 133Ba+ (I = 1/2) isotope in particular is a promising candidate for large-scale quantum computing experiments. However, a major pitfall with this isotope is that it is radioactive and is thus generally used in microgram quantities to satisfy safety regulations. We describe a new method for creating microgram barium chloride (BaCl2) ablation targets for use in trapped ion experiments and compare our procedure to previous methods. We outline two recipes for the fabrication of ablation targets that increase the production of neutral atoms for isotope-selective loading of barium ions. We show that heat-treatment of the ablation targets greatly increases the consistency at which neutral atoms can be produced, and we characterize the uniformity of these targets using trap-independent techniques such as energy dispersive x-ray spectroscopy and neutral fluorescence collection. Our comparison between fabrication techniques and the demonstration of consistent neutral fluorescence paves a path toward reliable loading of 133Ba+ in surface traps and opens opportunities for scalable quantum computing with this isotope.

Funder

University of Waterloo

Canada First Research Excellence Fund

Ontario Early Researcher Award

Canada Research Chairs

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3