A quantum trajectory picture of single photon absorption and energy transport in photosystem II

Author:

Cook Robert L.1ORCID,Ko Liwen1ORCID,Whaley K. Birgitta1ORCID

Affiliation:

1. Department of Chemistry, University of California , Berkeley, California 94720, USA

Abstract

We use quantum trajectory theory to study the dynamics of the first step in photosynthesis for a single photon interacting with photosystem II (PSII). By considering individual trajectories we are able to look beyond the ensemble average dynamics to compute the PSII system evolution conditioned upon individual photon counting measurements. Measurements of the transmitted photon beam strongly affects the system state, since detection of an outgoing photon confirms that the PSII must be in the electronic ground state, while a null measurement implies it is in an excited electronic state. We show that under ideal conditions, observing the null result transforms a state with a low excited state population to a state with nearly all population contained in the excited states. We study the PSII dynamics conditioned on such photon counting for both a pure excitonic model of PSII and a more realistic model with exciton-phonon coupling to a dissipative phononic environment. In the absence of such coupling, we show that the measured fluorescence rates show oscillations constituting a photon-counting witness of excitonic coherence. Excitonic coupling to the phonon environment has a strong effect on the observed rates of fluorescence, damping the oscillations. Addition of non-radiative decay and incoherent transitions to radical pair states in the reaction center to the phononic model allows extraction of a quantum efficiency of 92.5% from the long-time evolution, consistent with bulk experimental measurements.

Funder

Basic Energy Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3