High-performance solar-blind photodetector based on amorphous BN in harsh environment operations

Author:

Chen Le1ORCID,Tai Jiajin1ORCID,Wang Deyu2ORCID,Wang Shuo1ORCID,Liang Hongwei2ORCID,Yin Hong1ORCID

Affiliation:

1. State Key Lab of Superhard Materials, College of Physics, Jilin University 1 , Changchun 130012, People's Republic of China

2. School of Microelectronics, Dalian University of Technology 2 , Dalian 116024, People's Republic of China

Abstract

High-performance solar-blind photodetectors capable of operating in extreme environments are desirable for a wide range of applications, such as engine control, down hole drilling, space exploration, and environmental monitoring. Boron nitride (BN), with an ultrawide bandgap and high band edge absorption coefficient, is especially suitable for such application scenarios owing to its chemical and structural stability at high temperatures and radiative conditions, which, however, in turn, brings difficulties in synthesis of large-area continuous single crystalline BN. Here, we report highly robust solar-blind photodetectors based on amorphous BN (a-BN) films that can operate at high temperatures and high electric fields. The a-BN films are dense and uniform, grown at 500 °C using dual beam-assisted deposition method. The a-BN-based photodetectors exhibit high performance with a responsivity of 0.56 mA/W at 20 V under UV illumination of 222 nm and a high rejection ratio (R222 nm/R295 nm > 200 and R222 nm/R315 nm > 500). More importantly, these photodetectors demonstrate excellent responsivity and stability at high temperatures up to 500 K and high bias of 200 V without breakdown. The photocurrent mechanism at elevated temperatures is analyzed by temperature-dependent decay time of the temporal response, showing the electron–phonon interaction and self-trapped holes are dominant. Our work suggests that the deposition of such a-BN films offers a promising strategy toward highly environment-resistant solar-blind photodetectors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3