Extended x-ray absorption fine structure measurement of ramp compressed Ti using laser-irradiated metallic foil as x-ray source on SGIII prototype laser facility

Author:

Hu Yun1ORCID,Wang Zhebin2ORCID,Zhang Jiyan2,Xue Quanxi3,Ye Qing2,Jiang Shaoen2ORCID

Affiliation:

1. School of Energy Engineering, Yulin University 1 , 7 Chongwen Road, Yulin 719000, People’s Republic of China

2. Laser Fusion Research Center, China Academy of Engineering Physics 2 , Mianyang 621900, People’s Republic of China

3. State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology 3 , Xi’an 710024, People’s Republic of China

Abstract

Laser-irradiated metallic foils were considered as x-ray sources for extended x-ray absorption fine structure (EXAFS) measurements and confirmed by experiments on the SGIII prototype facility. The Au foils were irradiated by laser beams with a total energy of 2.77 kJ and full width at half maximum (FWHM) of 1 ns to create an x-ray source. The x-ray emission was spectrally smooth in the energy range of Ti EXAFS, the FWHM of Au foil x-ray radiation pulse in the energy range of 0.1–4000 eV was 0.99 ns, and the FWHM of x-ray pulse in the energy range of 5000–6000 eV was deduced to be 0.55 ns according to simulation results. A shaped laser pulse was designed to achieve the Ti sample’s laser-direct-driven ramp compression process. By creating a quasi-stable state lasting longer than 1 ns as the probing window during the compression process, the demand for temporal resolution was reduced. EXAFS spectra of compressed Ti in α and ω-phase were obtained and compared, and structural phase transition was verified by EXAFS pattern changes. The velocity of the back interface of the Ti sample was measured by the velocity interferometer system for any reflector, and the maximum of the deduced pressure in the middle of the Ti sample was 8.2 GPa, which is consistent with the α-ω phase transition.

Funder

National Natural Science Foundation of China

Launch Fund for High-Lever Talents of Yulin University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3