Dynamics of sphere impact on a suspended film with glycerol and surfactant

Author:

Li DanORCID,Ye XueminORCID,You Xiangjie,Li ChunxiORCID

Abstract

Understanding the dynamics and inherent mechanisms of sphere impact on suspended films is important for improving sphere-film separation techniques. In this study, we conducted experiments to investigate the dynamics of sphere impact on suspended films and examine typical phenomena. We revealed the effects of dynamic viscosity and surface tension of films by altering the glycerol content (G) and the relative surfactant concentration (C*) and elucidated the characteristics of film deformation, sphere trajectory (hs), and contact time (tc). Moreover, we obtained the influences of sphere and film properties on bubble volume (Vbub) by analyzing force balance. The results indicate that three modes are observed and divided using the dimensionless energy parameter E* = Ek0/(ΔEfs + Evis) based on energy analysis, considering the sphere kinetic energy (Ek0), film surface energy increment (ΔEfs), and viscous dissipation (Evis): satisfying E* < 1, retention occurs; satisfying 1 < E* < 127.7(Ds/Df)2 (where Ds is the sphere diameter, Df is the film diameter), bubble entrainment passing appears; satisfying E* > 127.7(Ds/Df)2, non-bubble entrainment passing emerges. During retention, increasing G and C* causes film surface elasticity and hs to present a trend of first rising and then falling. For passing, the increase in G reduces deformability, leading hs to decrease, while increasing C* makes the film more susceptible to deformation, causing hs to increase. In addition, a film vibration period (τf) is introduced to measure tc, satisfying tc > 2τf for retention, while satisfying tc < τf/3 for passing. Inspection of the relationship between film deformation and falling height indicates that Vbub enlarges with increasing Ds and C* but shrinks with increasing G and release height Hs0.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3