An 18.3 MJ charging and discharging pulsed power supply system for the space plasma environment research facility (SPERF): the subsystem for the magnetic mirror coil

Author:

E Peng1ORCID,Guan Jian2ORCID,Ma Xun3ORCID,Ling Wenbin1ORCID,Deng Weijun3,Ding Mingjun3,Kang Chuanhui3ORCID,Zhao Juan3,Li Hongtao3,Tong Weiming1,Li Liyi1

Affiliation:

1. Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology 1 , Harbin 150001, Heilongjiang, China

2. School of Electrical Engineering and Automation, Harbin Institute of Technology 2 , Harbin 150001, Heilongjiang, China

3. Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP 3 , Mianyang 621900, Sichuan, China

Abstract

The magnetic reconnection process relevant to that at the magnetotail is one of the research contents of the Space Plasma Environment Research Facility, which is under construction at the Harbin Institute of Technology in China. Two magnetic mirror sub-coils placed symmetrically in the vertical direction and connected in series cooperate with a dipole coil to generate a magnetic field environment similar to the Earth’s magnetotail. A capacitor-based pulsed power supply (PPS) system with a modular design is developed to excite two magnetic mirror sub-coils to generate a magnetic field with a magnetic flux density of not less than 200 G at the center of the two sub-coils. The PPS should deliver a pulsed current with a peak of more than 8 kA, and the duration of the current not be less than 95% of the peak over 5 ms to two magnetic mirror sub-coils when the charging voltage is not less than 20 kV. In addition, the duration from the peak to 10% of the peak is not more than 130 ms. The detailed design of the PPS is discussed in this paper, and a test method is designed to reduce the risk of damage to the wires and the connection between the wires and the coaxial cables of the PPS when the PPS discharges at a higher charging voltage. Finally, the discharge test of the PPS is carried out to verify the design of the PPS.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3