Effect of pulsed magnetic field in murine T lymphoma EL4 cells

Author:

Lee Hyunsook1ORCID,Lee Boram1ORCID,Kim Sojin1,Jung Juyeon1

Affiliation:

1. Department of Oriental Biomedical Engineering, College of Health Science, Sangji University , Wonju 26339, South Korea

Abstract

Maintenance of homoeostasis in human body is a very important indicator in all cell activities. When exposed to a disease, various immune cells are activated due to the inflammatory response, and particularly T cells play a role in inducing apoptosis of mutated cells such as tumor cells. When the activity of T cells is very low, infection by external invasion is easy, and on the contrary, excessive activation leads to chronic inflammation caused by autoimmune diseases. Many clinical studies related to pulsed magnetic field (PMF) demonstrated its efficacy in reducing pain, improving blood circulation, as well as blood’s acid-base balance. Therefore, our study has tried to investigate the influence of PMF on the regulation of acid-base homeostasis in EL4 T lymphoma cell. In addition, we have tried to explain the role of PMF on immune cell activity by measuring the level of pro-inflammatory cytokine, TNF-α in culture supernatants. EL4 cells were cultured in a DMEM medium supplemented with 10% FBS and 1% penicillin in an incubator at 37 °C and 5% CO2 condition. Our PMF stimulator has the maximum strength of 4700 G at a transition time of 222 μs with pulse intervals of 1 Hz. The homoeostasis in pH was improved as PMF strength increases. Cell viability decreased by 32% after PMF stimulation of 4700 G. It was observed that the concentration of TNF-α, a cytokine related to inflammation, also decreased as the strength of PMF increased. These results suggest that PMF stimulation improves the anti-inflammatory effect, therefore, it is thought to affect the immune system by balancing the activation and suppression of immune cells. For clinical use, our study might suggest non-invasive PMF can be developed as a medical devices modulating immune system, although it is necessary to optimize the PMF conditions such as pulse shape, duration, or repetition rate.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3