Estimation of Carleman operator from a univariate time series

Author:

Semba Sherehe12ORCID,Yang Huijie1ORCID,Chen Xiaolu3ORCID,Wan Huiyun1,Gu Changgui1ORCID

Affiliation:

1. Department of Systems Science, Business School, University of Shanghai for Science and Technology 1 , Shanghai 200093, China

2. Faculty of Science, Dar es Salaam University College of Education, University of Dar es Salaam 2 , Dar es Salaam, Tanzania

3. Nanxun Innovation Institute, Zhejiang University of Water Resources and Electric Power 3 , Hangzhou 310018, China

Abstract

Reconstructing a nonlinear dynamical system from empirical time series is a fundamental task in data-driven analysis. One of the main challenges is the existence of hidden variables; we only have records for some variables, and those for hidden variables are unavailable. In this work, the techniques for Carleman linearization, phase-space embedding, and dynamic mode decomposition are integrated to rebuild an optimal dynamical system from time series for one specific variable. Using the Takens theorem, the embedding dimension is determined, which is adopted as the dynamical system’s dimension. The Carleman linearization is then used to transform this finite nonlinear system into an infinite linear system, which is further truncated into a finite linear system using the dynamic mode decomposition technique. We illustrate the performance of this integrated technique using data generated by the well-known Lorenz model, the Duffing oscillator, and empirical records of electrocardiogram, electroencephalogram, and measles outbreaks. The results show that this solution accurately estimates the operators of the nonlinear dynamical systems. This work provides a new data-driven method to estimate the Carleman operator of nonlinear dynamical systems.

Funder

National Natural Science Foundation of China

Shanghai Key Discipline Construction Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3