Electrohydrodynamic flows inside a neutrally buoyant leaky dielectric drop

Author:

Karp Joel R.1ORCID,Lecordier Bertrand1ORCID,Shadloo Mostafa S.12ORCID

Affiliation:

1. INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, CORIA UMR 6614 1 , F-76000 Rouen, France

2. Institut Universitaire de France 2 , Rue Descartes, F-75231 Paris, France

Abstract

We present an experimental investigation of electrohydrodynamic (EHD) flows within a neutrally buoyant drop with a radius of 2.25 mm. Utilizing particle image velocimetry and high-speed shadowgraphy, we measure the internal circulation and reported velocity profiles in the bulk and at the interface of the drop. Two leaky dielectric liquids, silicone and castor oils, are employed as the drop and as the external phase, allowing the analysis of two shape configurations: oblate and prolate. The strength of the applied uniform electric field (from 0.125 to 1.75 kV/cm) enables the analysis covering both the small-deformation limit (CaE≪1) and drops with larger deformations. Our measurements show good agreement with the leaky dielectric model (LDM) for the small-deformation cases. The flows begin at the interface as a result of jump in the electric stresses, leading then to four counter-rotating vortices inside the drop. At a permanent regime, the analytical solutions adequately predict the radial and tangential velocity components within the drop. However, a nuanced behavior is noticed for larger deformations, where the LDM theory underpredicts the internal circulation. Moreover, due to the increased deformation, a non-uniform azimuthal profile is observed for the velocity at the interface, vθ. Transient measurements of this velocity component enlighten the dynamic response of the EHD flows of the drop. Following the available analytical solutions, the dynamic response is governed by the timescale of the deformation of the drop, τdef=μa/γ. We propose a critical value of CaE≈0.1 below which the LDM adequately describes the velocity field in both quasi steady-state and transitory regimes.

Funder

Région Normandie

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3