Strain engineering in 2D FETs: Physics, status, and prospects

Author:

Kumar Ankit1,Xu Lin1,Pal Arnab1,Agashiwala Kunjesh1,Parto Kamyar1ORCID,Cao Wei1ORCID,Banerjee Kaustav1ORCID

Affiliation:

1. ECE Department, University of California, Santa Barbara , Santa Barbara, California 93106, USA

Abstract

In this work, we explore the physics and evaluate the merits of strain engineering in two-dimensional van der Waals semiconductor-based FETs (field-effect-transistors) using DFT (density functional theory) to determine the modulation of the channel material properties under strain, and subsequently, their effect on carrier transport properties, i.e., scattering rates, mobility, and then finally simulate and analyze dissipative current transport with a non-equilibrium Green's function–Poisson's equation self-consistent solver. The scattering model includes the effects of charged impurities, intrinsic phonons, and remote phonons as well as the screening effect due to charged carriers. Impact of strain engineering on contact resistance is also incorporated into the transport simulations to determine the potential performance enhancements using strain in practical devices. Based on the comprehensive simulation results, we identify the materials and strain configuration that provide the best improvement in performance. We demonstrate an ON-current gain of 43.3% in a biaxially compressively strained monolayer MoSe2 device achieved through unique valley-crossing. Furthermore, implications of strain engineering for emerging energy-efficient devices based on band-to-band tunneling and spintronics are evaluated to explore uncharted frontiers in beyond-CMOS electron devices.

Funder

Army Research Office

National Science Foundation

Publisher

AIP Publishing

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3