High-efficiency broadband absorption/reflection integrated lossy acoustic metasurface via embedded microperforated wall

Author:

He Jin1,Liang Qingxuan1ORCID,He Hailang2,Wang Miao2,Li Dichen1,Chen Tianning1ORCID

Affiliation:

1. State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University 1 , Xi'an, Shaanxi 710049, China

2. Dechuang Future Automobile Technology Co., Ltd 2 , Xi'an, Shaanxi 710000, China

Abstract

Period phase gradient metasurface plays a great role in promoting the innovation of acoustic application devices. However, harnessing the internal thermal viscosity of the period phase gradient metasurface to realize sound absorption and non-reciprocal transmission faces the narrow working frequency band and uncontrollable efficiency. In this paper, we propose a lossy metasurface by embedded microperforated walls to realize sound redirection and absorption with high efficiency than 90% simultaneously. The phase modulation is realized using an opening channel, which can cover the 2 π phase range in a broadband frequency range by changing the channel depth. The loss introduced by the microperforated walls can achieve efficient sound energy dissipation when negative reflection occurs. The functions can be switched between wave redirection and wave absorption by rotating the metasurface. In addition, this metasurface can redirect the incident wave below −10° and absorb the incident wave above 25° over a wide frequency range from 1500 to 6500 Hz. The simulation and experiment results of our design are in excellent agreement. This research provided a new bridge to integrate wave redirection and absorption with microperforated walls and may have potential applications in acoustic sensing, sound source identification, and mechanical fault diagnosis.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An acoustic compound eye for omnidirectional broadband signal enhancement;International Journal of Mechanical Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3