The impact of drop-shaped pin-fins on the thermal and hydraulic characteristics of a finned tube

Author:

Deeb Rawad12ORCID

Affiliation:

1. Department of Thermal Power Plants, National Research University (Moscow Power Engineering Institute) 1 , Moscow 111250, Russia

2. Department of General Mechanic Engineering, Damascus University 2 , Damascus, The Syrian Arab Republic

Abstract

In this study, circular and drop-shaped pin-fins were employed to investigate the influence of pin-fins on the thermal behavior and flow characteristics of finned tubes using a combination of experimental and numerical methods. The configuration of in-line pin-fins was analyzed and compared with that of a smooth tube. The analysis covered Reynolds numbers spanning from Re = 7.03 × 103 to 35.17 × 103. Thermal and hydraulic contours were depicted. Two methodologies were utilized to assess the overall performance. The outcomes demonstrated that the average Nusselt number for the finned tubes equipped with drop and circular pin-fins rose by approximately 50.03%–93.1% and 59.59%–77.08%, respectively, in comparison to the smooth circular tube. Moreover, the drop-shaped pin-fins on the tube displayed a reduced friction factor, leading to a reduction of 1.36%–7.95% in comparison to the circular counterpart. Furthermore, both drop and circular pin-fins on the tubes exhibited approximately 2.93%–54.89% and 7.33%–37.1% higher efficiency, respectively, compared to the smooth tube. Generalized correlations were developed to compute the Nusselt number, friction factor, and effectiveness in relation to the Reynolds number, with the aim of providing guidance for future research and design efforts in heat exchangers incorporating pin-fin tubes. The utilization of tubes featuring drop-shaped pin-fins plays a significant role in energy conservation.

Publisher

AIP Publishing

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3