Role of very large-scale motions in shock wave/turbulent boundary layer interactions

Author:

Fan JianhuiORCID,Hao JiaaoORCID,Wen Chih-YungORCID

Abstract

The present study investigates the cause of low-frequency unsteadiness in shock wave/turbulent boundary layer (TBL) interactions. A supersonic turbulent flow over a compression ramp is studied using wall-resolved large eddy simulation (LES) with a freestream Mach number of 2.95 and a Reynolds number (based on δ0: the thickness of the incoming TBL) of 63 560. From the view of stability analysis, the effect of intrinsic instability on such low-frequency unsteadiness is excluded from the flow system by designing a ramp angle of 15°, and our attention is paid to the convective instability contributed by the incoming TBL. The LES results are analyzed by linear and nonlinear disambiguation optimization (LANDO), spectral proper orthogonal decomposition (SPOD), and resolvent analysis. The LANDO results reveal a streamwise scale-frequency relation of coherent structures in a very long (around 60δ0) TBL, which indicates that the dynamics of very large-scale motions (VLSMs) in the TBL are featured by a low frequency. The SPOD results reveal that the most energetic SPOD mode features a low frequency that is identical to the dominant low frequency of the wall-pressure spectrum. Additionally, coherent structures of the mode resemble the VLSMs in the incoming TBL. These consistencies imply that the dynamics of VLSMs contribute to the low-frequency unsteadiness of the present flow. A resolvent analysis then further suggests that the origins of low-frequency dynamics of the present flow are from the VLSMs, which can be optimally amplified by the forcing in the turbulent flow.

Funder

Hong Kong Research Grants Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3