Systematic discovery of transcription factors that improve hPSC-derived cardiomyocyte maturation via temporal analysis of bioengineered cardiac tissues

Author:

Kumar Aditya1ORCID,He Starry1,Mali Prashant1ORCID

Affiliation:

1. Department of Bioengineering, University of California , San Diego, California 92093, USA

Abstract

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have the potential to become powerful tools for disease modeling, drug testing, and transplantation; however, their immaturity limits their applications. Transcription factor (TF) overexpression can improve hPSC-CM maturity, but identifying these TFs has been elusive. Toward this, we establish here an experimental framework for systematic identification of maturation enhancing factors. Specifically, we performed temporal transcriptome RNAseq analyses of progressively matured hPSC-derived cardiomyocytes across 2D and 3D differentiation systems and further compared these bioengineered tissues to native fetal and adult-derived tissues. These analyses revealed 22 TFs whose expression did not increase in 2D differentiation systems but progressively increased in 3D culture systems and adult mature cell types. Individually overexpressing each of these TFs in immature hPSC-CMs identified five TFs (KLF15, ZBTB20, ESRRA, HOPX, and CAMTA2) as regulators of calcium handling, metabolic function, and hypertrophy. Notably, the combinatorial overexpression of KLF15, ESRRA, and HOPX improved all three maturation parameters simultaneously. Taken together, we introduce a new TF cocktail that can be used in solo or in conjunction with other strategies to improve hPSC-CM maturation and anticipate that our generalizable methodology can also be implemented to identify maturation-associated TFs for other stem cell progenies.

Funder

National Human Genome Research Institute

NIH Office of the Director

U.S. Department of Defense

Norn Group

American Heart Association

Publisher

AIP Publishing

Subject

Biomedical Engineering,Biomaterials,Biophysics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3