The hydrothermal performance of non-Newtonian fluids in superhydrophobic microchannels

Author:

Shahsavari ArghavanORCID,Pakzad HosseinORCID,Moosavi AliORCID

Abstract

Investigating the thermal performance of non-Newtonian fluids is of great importance as these fluids are ubiquitous in industry. In this regard, we perform a series of numerical simulations to investigate the effect of superhydrophobic microstructures in a microchannel containing Newtonian, shear-thinning, and shear-thickening fluids on their hydrothermal performances. To this end, three different cases are considered. In the first case, the upper wall is subjected to various heat fluxes and temperatures in the range of 104–106 W/m2 and 303.15–323.15 K, respectively. In the second case, the working fluid's Reynolds number varies while the upper wall's thermal condition is fixed. In the last case, the temperature of the computational zone is set to a constant value. As the air pockets are absent near the upper wall, the thermal energy is transferred without any loss, increasing the working fluid's temperature and, consequently, plummeting the viscosity and resulting in smaller shear stresses. It is revealed that this channel can reduce the pressure drop up to 31.9% and 29.9% for constant heat flux and constant temperature conditions, respectively. The higher the Reynolds number, the lesser the drag reduction performance. The rise in the computational zone's temperature can profoundly improve the pressure drop plummeting performance. For all cases, the recirculation of the air within the bottom surface features is responsible for slip velocity and smaller shear stress at the bottom wall. The results show that the overall performance of the proposed channel is better than the smooth one.

Funder

Office of Research and Technology of Sharif University of Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3