Influence of boron implantation induced defects on solar cells: Modeling the process defects

Author:

Masilamani Sangaravadivel1ORCID,Ammapet Vijayan Ramachandran2ORCID,Varadharajaperumal Muthubalan1ORCID

Affiliation:

1. 104, Device Modeling Lab, ASK-II, SASTRA Deemed University 1 , Thanjavur, Tamil Nadu 613 401, India

2. Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai Campus 2 , Vengal Village, Thiruvallur 601 103, Tamil Nadu, India

Abstract

The effect of process-induced defects on the photo-generated charge-carrier lifetime and solar cell performance is critical, which will help optimize the process recipe. In this work, we attempt to quantify the effects of process-induced defects during boron implantation on the n-type silicon wafer in different annealing ambiences. We have evaluated the role of defects that can be formed during oxygen and inert ambience annealing on n-type bifacial passivated emitter rear totally diffused solar cells using a recombination current prefactor (J0). The numerically calculated J0 is calibrated with the reported experimental J0 values using two different methods: (i) Shockley–Read–Hall lifetime and (ii) effective trap-density method. In the latter method, we used the simulated defect density profiles. Both methods capture the process-induced degradation. We observed that the process-induced defects could deteriorate by almost 1% absolute efficiency for the considered annealing conditions. We found that dislocation loops alone cause an ignorable effect on terminal characteristics, but other process-induced mechanisms could dominantly degrade the cell's performance. To further support, we show that independent defects (apart from coupled defects) other than dislocation loops could explain the experimentally reported boron-implanted diodes’ J–V curves under reverse bias conditions.

Funder

Council of Scientific and Industrial Research, India

Department of Science and Technology, India, through the Fund for Improvement of S&T Infrastructure Programme

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3