Digital twins and deep learning segmentation of defects in monolayer MX2 phases

Author:

Fuhr Addis S.1ORCID,Ganesh Panchapakesan1ORCID,Vasudevan Rama K.1ORCID,Roccapriore Kevin M.1ORCID,Sumpter Bobby G.1ORCID

Affiliation:

1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, USA

Abstract

Developing methods to understand and control defect formation in nanomaterials offers a promising route for materials discovery. Monolayer MX2 phases represent a particularly compelling case for defect engineering of nanomaterials due to the large variability in their physical properties as different defects are introduced into their structure. However, effective identification and quantification of defects remain a challenge even as high-throughput scanning transmission electron microscopy methods improve. This study highlights the benefits of employing first principles calculations to produce digital twins for training deep learning segmentation models for defect identification in monolayer MX2 phases. Around 600 defect structures were obtained using density functional theory calculations, with each monolayer MX2 structure being subjected to multislice simulations for the purpose of generating the digital twins. Several deep learning segmentation architectures were trained on this dataset, and their performances evaluated under a variety of conditions such as recognizing defects in the presence of unidentified impurities, beam damage, grain boundaries, and with reduced image quality from low electron doses. This digital twin approach allows benchmarking different deep learning architectures on a theory dataset, which enables the study of defect classification under a broad array of finely controlled conditions. It thus opens the door to resolving the underpinning physical reasons for model shortcomings and potentially chart paths forward for automated discovery of materials defect phases in experiments.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3