Excitation lifetime extracted from electron–photon (EELS-CL) nanosecond-scale temporal coincidences

Author:

Varkentina Nadezda1ORCID,Auad Yves1ORCID,Woo Steffi Y.1ORCID,Castioni Florian1ORCID,Blazit Jean-Denis1,Tencé Marcel1ORCID,Chang Huan-Cheng2ORCID,Chen Jeson2ORCID,Watanabe Kenji3ORCID,Taniguchi Takashi4ORCID,Kociak Mathieu1ORCID,Tizei Luiz H. G.1ORCID

Affiliation:

1. Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides 1 , 91405 Orsay, France

2. Academia Sinica, Institute of Atomic and Molecular Sciences 2 , Taipei, Taiwan

3. Research Center for Electronic and Optical Materials, National Institute for Materials Science 3 , 1-1 Namiki, Tsukuba 305-0044, Japan

4. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science 4 , 1-1 Namiki, Tsukuba 305-0044, Japan

Abstract

Electron–photon temporal correlations in electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopies have recently been used to measure the relative quantum efficiency of materials. This combined spectroscopy, named cathodoluminescence excitation (CLE) spectroscopy, allows for the identification of excitation and decay channels, which are hidden in average measurements. Here, we demonstrate that CLE can also be used to measure excitations' decay time. In addition, the decay time as a function of the excitation energy is measured, as the energy for each electron–photon pair is probed. We used two well-known insulating materials to characterize this technique, nanodiamonds with NV0 defects and hexagonal boron nitride (h-BN) with 4.1 eV defects. Both also exhibit marked transition radiations, whose extremely short decay times can be used to characterize the instrumental response function. It is found to be typically 2 ns, in agreement with the expected limit of the EELS detector temporal resolution. The measured lifetimes of NV0 centers in diamond nanoparticles (20–40 ns) and 4.1 eV defect in h-BN flakes (<2 ns) match those reported previously.

Funder

Agence Nationale de la Recherche

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3