Electrical, optical, and magnetic properties of amorphous yttrium iron oxide thin films and consequences for non-local resistance measurements

Author:

Roos M. J.1ORCID,Bleser S. M.1ORCID,Hernandez L.1ORCID,Diederich G. M.123,Siemens M. E.1ORCID,Wu M.4ORCID,Kirby B. J.5ORCID,Zink B. L.1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Denver 1 , Denver, Colorado 80208, USA

2. Intelligence Community Postdoctoral Research Fellowship Program, University of Washington 2 , Seattle, Washington 98195, USA

3. Department of Physics, University of Washington 3 , Seattle, Washington 98195, USA

4. Department of Physics, Colorado State University 4 , Fort Collins, Colorado 80523, USA

5. NIST Center for Neutron Research, National Institute of Standards and Technology 5 , Gaithersburg, Maryland 20899, USA

Abstract

We present magnetic characterization, charge resistivity, and optical photoluminescence measurements on amorphous yttrium iron oxide thin films (a-Y–Fe–O), with supporting comparisons to amorphous germanium (a-Ge) films. We measured magnetic properties with both SQUID magnetometry and polarized neutron reflectometry. These results not only confirm that a-Y–Fe–O is a disordered magnetic material with strong predominantly antiferromagnetic exchange interactions and a high degree of frustration, but also that it is best understood electrically as a disordered semiconductor. As with amorphous germanium, a-Y–Fe–O obeys expectations for variable-range hopping through localized electron states over a wide range of temperature. We also clarify the consequences of charge transport through such a semiconducting medium for non-local voltage measurements intended to probe spin transport in nominally insulating magnetic materials. We further compare non-local resistance measurements made with “quasi-dc” automated current reversal to ac measurements made with a lock-in amplifier. These show that the “quasi-dc” measurement has an effective ac current excitation with frequency up to approximately 22 Hz, and that this effective ac excitation can cause artifacts in these measurements including incorrect sign of the non-local resistance. This comprehensive investigation of non-local resistance measurements in a-Y–Fe–O shows no evidence of spin transport on micrometer length scales, which is contrary to our original work, and in line with more recent investigations by other groups.

Funder

National Science Foundation

Intelligence Community Postdoctoral Research Fellowship Program

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3