Influence of random telegraph noise on quantum bit gate operation

Author:

Likens Jackson1,Prabhakar Sanjay1ORCID,Lal Ratan2,Melnik Roderick34ORCID

Affiliation:

1. Department of Natural Science, D L Hubbard Center for Innovation, Loess Hill Research Center, Northwest Missouri State University 1 , 800 University Drive, Maryville, Missouri 64468, USA

2. Department of Computer Science, Northwest Missouri State University 2 , 800 University Drive, Maryville, Missouri 64468, USA

3. MS2Discovery Interdisciplinary Research Institute, M3AI Lab, Wilfrid Laurier University 3 , 75 University Avenue, Waterloo, Ontario N3L 3V6, Canada

4. BCAM, Bizkaia Technology Park 4 , 48160 Derio, Spain

Abstract

We consider the problem of analyzing spin-flip qubit gate operation in the presence of Random Telegraph Noise (RTN). Our compressive approach is the following. By using the Feynman disentangling operators method, we calculate the spin-flip probability of qubit driven by different kinds of composite pulses, e.g., Constant pulse (C-pulse), Quantum Well pulse (QW-pulse), and Barrier Potential pulse (BP-pulse) in the presence of RTN. When composite pulses and RTN act in the x-direction and z-direction respectively, we calculate the optimal time to achieve perfect spin-flip probability of qubit. We report that the highest fidelity of spin-flip qubit can be achieved by using C-pulse, followed by BP-pulse and QW-pulse. For a more general case, we have tested several pulse sequences for achieving high fidelity quantum gates, where we use the pulses acting in different directions. From the calculations, we find that high fidelity of qubit gate operation in the presence of RTN is achieved when QW-pulse, BP-pulse, and C-pulse act in the x-direction, y-direction, and z-direction, respectively. We extend our investigations for multiple QW and BP pulses while choosing the C-pulse amplitude constant in the presence of RTN. The results of calculation show that 98.5% fidelity can be achieved throughout the course of RTN that may be beneficial for quantum error correction.

Funder

Center for Hierarchical Manufacturing, National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3