Features of laminar separation bubble subjected to varying adverse pressure gradients

Author:

Kumar RaviORCID,Sarkar S.ORCID

Abstract

This article describes the spatial development of a laminar separation bubble (LSB), its transition, and eventual breakdown under the influence of adverse pressure gradients (APGs) similar to those experienced by low-pressure turbine blades. The investigation combines a comprehensive experimental approach with a well-resolved large eddy simulation (LES). The streamwise pressure gradients were varied by manipulating the upper wall within the test section. The Reynolds number (Re), based on the plate length and inlet velocity, was 0.2 × 106 with a freestream turbulence intensity of 1.02%. The particle image velocimetry (PIV) and hotwire data were used to illustrate the vortex dynamics, growth of perturbations, and intermittency. The onset and end of transition progressively shift upstream, resulting in a reduction of the laminar shear layer length and bubble length with increasing APG. Interestingly, the flow features exhibit self-similarity in velocity profiles and the growth rate of velocity fluctuations when normalized against the bubble length. The formation of two-dimensional Kelvin–Helmholtz (K–H) rolls is apparent in the beginning, resulting in the selective amplification of frequency and exponential growth of fluctuations. Linear stability theory explains the most amplified frequency and phase speed of convective vortices, apart from the growth of disturbances. Analysis of LES data reveals intricate inviscid–viscous interactions that trigger shear layer breakdown. In brief, evolving perturbations within the braid region of vortices in the latter half interact with the advecting K–H rolls, culminating in the breakdown and the onset of turbulent flow downstream.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3