High-resolution microscale velocity field measurement using light field particle image-tracking velocimetry

Author:

Gu MengtaoORCID,Li JianORCID,Hossain Md. Moinul1ORCID,Xu ChuanlongORCID

Affiliation:

1. School of Engineering, University of Kent 2 , Canterbury, Kent CT2 7NT, United Kingdom

Abstract

Light field microparticle image velocimetry (LF-μPIV) can realize the three-dimensional (3D) microscale velocity field measurement, but the spatial resolution of the velocity field is low. Therefore, this study proposes a high-resolution LF particle image-tracking velocimetry (PIV–PTV) in combination with a cross-validation matching (CVM) algorithm. The proposed method performs motion compensation for the distribution of particle center position based on the low-resolution velocity field achieved by PIV and then conducts the CVM on tracer particles with the nearest neighbor method. The motion compensation reduces the particle displacement during the matching, while the CVM reduces the impact of missing particles on the matching accuracy. Thus, the proposed method enables precise tracking of individual particles at higher particle concentrations and improves the spatial resolution of the velocity field. Numerical simulations were conducted on the 3D displacement field reconstruction. The influence of interrogation window size, particle diameter, and concentration was analyzed. Experiments were conducted on the microscale 3D velocity field within the microchannel with right-angle bends. Results indicate that the proposed method provides the high-resolution measurement of the microscale 3D velocity field and improves the precision of the velocity field compared to the PTV at higher particle concentrations. It demonstrates that the proposed method outperforms PIV by 26% in resolution and PTV by 76% in precision at a higher particle concentration of 1.5 particles per microlens.

Funder

National Natural Science Foundation of China

Zhishan Scholarship of Southeast University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3