Suspension and transportation of sediments in submarine canyon induced by internal solitary waves

Author:

Tian ZhuangcaiORCID,Huang JinjianORCID,Xiang JiamingORCID,Zhang ShaotongORCID

Abstract

The submarine canyon was the main channel for the transport of sediment to the deep sea, but the transport process in submarine canyon induced by internal solitary waves (ISWs) had not yet been conducted. Based on computational fluid dynamics, this study investigated sediment resuspension and transport induced by the interaction between ISWs and submarine canyon. The simulations showed that sediment particles near the canyon were resuspended due to the propagation of ISWs. The sediment of slope section experienced higher resuspension rates compared to the horizontal section. Sediments on the slope were suspended before the trough of ISW and then transported into the canyon. Sediment resuspension induced by ISWs was more significant in the slope section compared to the horizontal sections and contained 45% more sediment particles than the horizontal section within the canyon. The sediment concentration within the canyon gradually increased in both the horizontal and slope sections, with a particularly pronounced increase at the junction between the horizontal and slope section. The concentration of particles in the canyon was significantly higher than in the horizontal section, with an increase in 2.73 times. Furthermore, the sediment concentration within the canyon was 1.73 times higher than outside the canyon. A sediment water column with higher suspended matter concentration, known as the bottom nepheloid layer, was formed above the submarine canyon. However, these sediment particles could not cross the pycnocline and accumulated in the upper region of the lower water. The sediment distribution of the canyon was much greater than outside the canyon within the transverse section, with three times more sediment particles within the canyon compared to outside. The sediment distribution of slope section was significant more than the horizontal section. Sediment suspended above the canyon gradually moved downstream along the submarine canyon and primarily deposit at the junction between the horizontal and slope sections. Sediment movement also occurred along the submarine canyon in the horizontal section. The interaction between ISWs and submarine canyons intensified sediment resuspension and significantly affected the spatial distribution of sediment particles. This interaction could transport resuspended sediments from the continental shelf to the deep-sea basin, thereby influencing the deep-sea environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3