Charge Movement Associated with the Opening and Closing of the Activation Gates of the Na Channels

Author:

Armstrong Clay M.1,Bezanilla Francisco1

Affiliation:

1. From the Department of Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, the University of Chile, Viña del Mar, Chile, and the Marine Biological Laboratory, Woods Hole, Massachusetts

Abstract

The sodium current (INa) that develops after step depolarization of a voltage clamped squid axon is preceded by a transient outward current that is closely associated with the opening of the activation gates of the Na pores. This "gating current" is best seen when permeant ions (Na and K) are replaced by relatively impermeant ones, and when the linear portion of capacitative current is eliminated by adding current from positive steps to that from exactly equal negative ones. During opening of the Na pores gating current is outward, and as the pores close there is an inward tail of current that decays with approximately the same time-course as INa recorded in Na-containing medium. Both outward and inward gating current are unaffected by tetrodotoxin (TTX). Gating current is capacitative in origin, the result of relatively slow reorientation of charged or dipolar molecules in a suddenly altered membrane field. Close association with the Na activation process is clear from the time-course of gating current, and from the fact that three procedures that reversibly block INa also block gating current: internal perfusion with Zn2+, prolonged depolarization of the membrane, and inactivation of INa with a short positive prepulse.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3