Modulation of CaV1.2 Channels by Mg2+ Acting at an EF-hand Motif in the COOH-terminal Domain

Author:

Brunet Sylvain1,Scheuer Todd1,Klevit Rachel2,Catterall William A.1

Affiliation:

1. Department of Pharmacology, University of Washington, Seattle, WA 98195

2. Department of Biochemistry, University of Washington, Seattle, WA 98195

Abstract

Magnesium levels in cardiac myocytes change in cardiovascular diseases. Intracellular free magnesium (Mgi) inhibits L-type Ca2+ currents through CaV1.2 channels in cardiac myocytes, but the mechanism of this effect is unknown. We hypothesized that Mgi acts through the COOH-terminal EF-hand of CaV1.2. EF-hand mutants were engineered to have either decreased (D1546A/N/S/K) or increased (K1543D and K1539D) Mg2+ affinity. In whole-cell patch clamp experiments, increased Mgi reduced both Ba2+ and Ca2+ currents conducted by wild type (WT) CaV1.2 channels expressed in tsA-201 cells with similar affinity. Exposure of WT CaV1.2 to lower Mgi (0.26 mM) increased the amplitudes of Ba2+ currents 2.6 ± 0.4–fold without effects on the voltage dependence of activation and inactivation. In contrast, increasing Mgi to 2.4 or 7.2 mM reduced current amplitude to 0.5 ± 0.1 and 0.26 ± 0.05 of the control level at 0.8 mM Mgi. The effects of Mgi on peak Ba2+ currents were approximately fit by a single binding site model with an apparent Kd of 0.65 mM. The apparent Kd for this effect of Mgi was shifted ∼3.3- to 16.5-fold to higher concentration in D1546A/N/S mutants, with only small effects on the voltage dependence of activation and inactivation. Moreover, mutant D1546K was insensitive to Mgi up to 7.2 mM. In contrast to these results, peak Ba2+ currents through the K1543D mutant were inhibited by lower concentrations of Mgi compared with WT, consistent with approximately fourfold reduction in apparent Kd for Mgi, and inhibition of mutant K1539D by Mgi was also increased comparably. In addition to these effects, voltage-dependent inactivation of K1543D and K1539D was incomplete at positive membrane potentials when Mgi was reduced to 0.26 or 0.1 mM, respectively. These results support a novel mechanism linking the COOH-terminal EF-hand with modulation of CaV1.2 channels by Mgi. Our findings expand the repertoire of modulatory interactions taking place at the COOH terminus of CaV1.2 channels, and reveal a potentially important role of Mgi binding to the COOH-terminal EF-hand in regulating Ca2+ influx in physiological and pathophysiological states.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3