pH-regulated Slo3 K+ Channels: Properties of Unitary Currents

Author:

Zhang Xue1,Zeng Xuhui1,Xia Xiao-Ming1,Lingle Christopher J.1

Affiliation:

1. Department of Anesthesiology and Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110

Abstract

Here we have examined the voltage and pH dependence of unitary Slo3 channels and used analysis of current variance to define Slo3 unitary current properties over a broader range of voltages. Despite complexity in Slo3 channel openings that precludes simple definition of the unitary conductance, average current through single Slo3 channels varies linearly with voltage at positive activation potentials. Furthermore, the average Slo3 unitary current at a given activation potential does not change with pH. Consistent with macroscopic conductance estimates, the apparent open probability of Slo3 channel exhibits a pH-dependent maximum, with limiting values around 0.3 at the most elevated pH and voltage. Estimates of Slo3 conductance at negative potentials support a weaker intrinsic voltage dependence of gating than is observed for Slo1. For the pH-regulated Slo3 K+ channel, the dependence of macroscopic conductance on pH suggests that the pH-sensitive mechanism regulates gating in an allosteric manner qualitatively similar to regulation of Slo1 by Ca2+. Together, the results support the view that the regulation of macroscopic Slo3 currents by pH reflects regulation of gating equilibria, and not a direct effect of pH on ion permeation. Specifically, both voltage and pH regulate a closed–open conformational change in a largely independent fashion.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3