Chemically Mediated Transmission at a Giant Fiber Synapse in the Central Nervous System of a Vertebrate

Author:

Auerbach A. A.1,Bennett M. V. L.1

Affiliation:

1. From the Department of Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461, and the Laboratory of Neurophysiology, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York 10032.

Abstract

The hatchetfish, Gasteropelecus, possesses large pectoral fin adductor muscles whose simultaneous contraction enables the fish to dart upwards at the approach of a predator. These muscles can be excited by either Mauthner fiber. In the medulla, each Mauthner fiber forms axo-axonic synapses on four "giant fibers," two on each side of the midline. Each pair of giant fibers innervates ipsilateral motoneurons controlling the pectoral fin adductor muscles. Mauthner fibers and giant fibers can be penetrated simultaneously by microelectrodes close to the synapses between them. Electrophysiological evidence indicates that transmission from Mauthner to giant fiber is chemically mediated. Under some conditions miniature postsynaptic potentials (PSP's) are observed, suggesting quantal release of transmitter. However, relatively high frequency stimulation reduces PSP amplitude below that of the miniature potentials, but causes no complete failures of PSP's. Thus quantum size is reduced or postsynaptic membrane is desensitized. Ramp currents in Mauthner fibers that rise too slowly to initiate spikes can evoke responses in giant fibers that appear to be asynchronous PSP's. Probably both spikes and ramp currents act on the same secretory mechanism. A single Mauthner fiber spike is followed by prolonged depression of transmission; also PSP amplitude is little affected by current pulses that markedly alter presynaptic spike height. These findings suggest that even a small spike releases most of an immediately available store of transmitter. If so, the probability of release by a single spike is high for any quantum of transmitter within this store.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3