Compound versus multigranular exocytosis in peritoneal mast cells.

Author:

Alvarez de Toledo G1,Fernandez J M1

Affiliation:

1. Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085.

Abstract

We have used the whole-cell patch-pipette technique to measure the step increases in the cell membrane capacitance (equivalent to the membrane area) caused by the fusion of secretory granules in degranulating murine mast cells. We have observed that up to 30% of the total membrane expansion caused by degranulation results from large fusion events that cannot be explained by the fusion of single secretory granules. These large events are observed mainly in the initial phase of a degranulation. We have developed a simple mathematical model for a mast cell to test whether these large events are caused by a stimulus-induced, granule-to-granule fusion that occurs before their exocytosis (multigranular exocytosis). Our results suggest that the large fusion events are caused by the exocytosis of granule aggregates that existed before stimulation and that are located at the cell's periphery. We propose a novel mechanism by which granule aggregates can be formed at the periphery of the cell. This mechanism relies on the ability of a transiently fused granule ("flicker") to fuse with more internally located granules in a sequential manner. This pattern may result in the formation of larger peripheral granules that later on can fuse with the membrane. The formation of peripheral granule aggregates may potentiate a subsequent secretory response.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3