A high-throughput electrophysiology assay to study the response of PIEZO1 to mechanical stimulation

Author:

Murciano Nicoletta12ORCID,Rotordam Maria Giustina1ORCID,Becker Nadine1ORCID,Ludlow Melanie J.3ORCID,Parsonage Gregory3ORCID,Darras Alexis4ORCID,Kaestner Lars24ORCID,Beech David J.3ORCID,George Michael1ORCID,Fertig Niels1ORCID,Rapedius Markus1ORCID,Brüggemann Andrea1ORCID

Affiliation:

1. Nanion Technologies GmbH 1 , München, Germany

2. Saarland University 2 Theoretical Medicine and Biosciences, , Homburg, Germany

3. Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds 4 , Leeds, UK

4. Saarland University 3 Experimental Physics, , Saarbrücken, Germany

Abstract

PIEZO1 channels are mechanically activated cation channels that play a pivotal role in sensing mechanical forces in various cell types. Their dysfunction has been associated with numerous pathophysiological states, including generalized lymphatic dysplasia, varicose vein disease, and hereditary xerocytosis. Given their physiological relevance, investigating PIEZO1 is crucial for the pharmaceutical industry, which requires scalable techniques to allow for drug discovery. In this regard, several studies have used high-throughput automated patch clamp (APC) combined with Yoda1, a specific gating modifier of PIEZO1 channels, to explore the function and properties of PIEZO1 in heterologous expression systems, as well as in primary cells. However, a combination of solely mechanical stimulation (M-Stim) and high-throughput APC has not yet been available for the study of PIEZO1 channels. Here, we show that optimization of pipetting parameters of the SyncroPatch 384 coupled with multihole NPC-384 chips enables M-Stim of PIEZO1 channels in high-throughput electrophysiology. We used this approach to explore differences between the response of mouse and human PIEZO1 channels to mechanical and/or chemical stimuli. Our results suggest that applying solutions on top of the cells at elevated pipetting flows is crucial for activating PIEZO1 channels by M-Stim on the SyncroPatch 384. The possibility of comparing and combining mechanical and chemical stimulation in a high-throughput patch clamp assay facilitates investigations on PIEZO1 channels and thereby provides an important experimental tool for drug development.

Funder

European Union’s Horizon 2020

British Heart Foundation

Wellcome

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3