THE VISIBILITY OF SINGLE LINES AT VARIOUS ILLUMINATIONS AND THE RETINAL BASIS OF VISUAL RESOLUTION

Author:

Hecht Selig1,Mintz Esther U.1

Affiliation:

1. From the Laboratory of Biophysics, Columbia University, New York

Abstract

The visual resolution of a single opaque line against an evenly illuminated background has been studied over a large range of background brightness. It was found that the visual angle occupied by the thickness of the line when it is just resolved varies from about 10 minutes at the lowest illuminations to 0.5 second at the highest illuminations, a range of 1200 to 1. The relation between background brightness and just resolvable visual angle shows two sections similar to those found in other visual functions; the data at low light intensities represent rod vision while those at the higher intensities represent cone vision. With violet light instead of white the two sections become even more clearly defined and separated. The retinal image produced by the finest perceptible line at the highest brightness is not a sharp narrow shadow, but a thin broad shadow whose density distribution is described in terms of diffraction optics. The line of foveal cones occupying the center of this shadow suffers a decrease in the light intensity by very nearly 1 per cent in comparison either with the general retinal illumination or with that on the row of cones to either side of the central row. Since this percentage difference is near the limit of intensity discrimination by the retina, its retinal recognition is probably the limiting factor in the visual resolution of the line. The resolution of a line at any light intensity may also be limited by the just recognizable intensity difference, because this percentage difference varies with the prevailing light intensity. As evidence for this it is found that the just resolvable visual angle varies with the light intensity in the same way that the power of intensity discrimination of the eye varies with light intensity. It is possible that visual resolution of test objects like hooks and broken circles is determined by the recognition of intensity differences in their diffracted images, since the way in which their resolution varies with the light intensity is similar to the relation between intensity discrimination and light intensity.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3