Permeability of the Ehrlich Ascites Tumor Cell to Water

Author:

Hempling H. G.1

Affiliation:

1. From the Department of Physiology and Biophysics, Cornell University Medical College, New York

Abstract

The osmotic permeability coefficient for water has been measured for the Ehrlich mouse ascites tumor cell. Measurements were made of the rate of cell shrinkage in hyperosmotic solutions of NaCI, a functionally impermeable solute. During the first 9 months of weekly serial transplantation the mean was 6.4 µ3/µ3/atm. ± 0.8 (S.E.). By the end of the 2nd year the permeability coefficient was much lower and averaged 1.6 ± 0.09. There were no significant differences in the volume of the tumor cells which could explain the discrepancy on the basis of a change in the volume to surface area ratio. Studies of the effect of temperature were done and Eyring's theory of absolute reaction rates was applied to the data. The apparent energy of activation was 9.6 kcal./mol and ΔS‡ was 39.1 entropy units. The thermodynamic data are twice as high as data reported by Wang for self-diffusion and viscous properties of water. Two alternate explanations have been advanced based on the pore hypothesis of membrane permeability. One explains the thermodynamic data from a change in the A'/Δx available for water movement; the other assumes A'/Δx constant and bases the results on the interaction of water dipoles with each other and the membrane.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods for cell volume measurement;Cytometry Part A;2017-06-16

2. Possible causes of apoptotic volume decrease: an attempt at quantitative review;American Journal of Physiology-Cell Physiology;2014-03-01

3. Hyperbaric oxygen treatment induces platelet aggregation and protein release, without altering expression of activation molecules;Clinical Biochemistry;2009-04

4. Fundamental Cryobiology of Mouse Ova and Embryos;Ciba Foundation Symposium 52 - The Freezing of Mammalian Embryos;2008-05-30

5. THE ROLE OF CELL MEMBRANES IN THE FREEZING OF YEAST AND OTHER SINGLE CELLS*;Annals of the New York Academy of Sciences;2006-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3