STUDIES ON THE METABOLISM OF THE COLORLESS ALGA PROTOTHECA ZOPFII

Author:

Anderson Edward H.1

Affiliation:

1. From the Hopkins Marine Station of Stanford University, Pacific Grove

Abstract

The metabolism of Prototheca zopfii was investigated in an attempt to establish the specific function of its growth factor, thiamin. A study of the oxidative decomposition of various substrates by this organism demonstrated that the addition of catalytic amounts of thiamin to vitamin-deficient cells causes a pronounced stimulation in the rate of oxygen utilization during the degradation of certain compounds. The phosphoric ester of thiamin is known to be the prosthetic group of carboxylase. The fact that this enzyme is involved in the decomposition of pyruvic acid suggested that this α-keto acid might be an important intermediate product in the metabolism of Prototheca. Pyruvic acid, however, was not included in the list of organic substances which Barker had reported as utilized by this alga. Barker's observations were confirmed, but subsequent experiments led to serious doubts as to the validity of his interpretation. Further investigations resulted in the establishment of environmental conditions which permit this alga to readily decompose pyruvic acid, as well as nearly all other organic acids tested. This can be accomplished by providing a millieu of sufficiently low pH to insure the presence of undissociated acid molecules. The stimulatory effect on the rate of oxygen consumption, caused by the addition of minute amounts of thiamin to suspensions of vitamin-deficient cells of Prototheca respiring pyruvic acid, indicates that the presence of thiamin results in the synthesis of enzyme systems which are involved in the decomposition of pyruvic acid. Experimental data on the oxidation of pyruvic acid and other organic compounds are discussed in the light of various hypotheses which have been advanced concerning the rôle of carboxylase in the decomposition of pyruvic acid. The conservative conclusion which can be drawn from the available information is that there appears to be no justification for a belief that thiamin and carboxylase are functional in biochemical reactions other than in decarboxylation and carboxylation processes. The discovery of the ability of Prototheca to utilize substituted and dicarboxylic acids led to further studies on the mechanism of oxidative assimilation. The results of these investigations are in agreement with those of Clifton and Logan, and of Doudoroff, and indicate the existence of a relatively simple chemical mechanism of assimilation rather than of a strictly energetic coupling of catabolic and anabolic reactions. A consideration of possible mechanisms for the oxidative assimilation of pyruvic and lactic acids indicates acetic acid as the most likely starting point for the assimilatory process proper. Experimental investigations of the mode of acetate breakdown began with studies on the oxidation of glycolic acid. This substance is shown to be an oxidation catalyst in the metabolism of Prototheca zopfii. The exact nature of the catalytic function has not yet been determined.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3