Myosin motors that cannot bind actin leave their folded OFF state on activation of skeletal muscle

Author:

Reconditi Massimo12ORCID,Brunello Elisabetta3ORCID,Fusi Luca3ORCID,Linari Marco1ORCID,Lombardi Vincenzo1ORCID,Irving Malcolm3ORCID,Piazzesi Gabriella1ORCID

Affiliation:

1. PhysioLab, Università di Firenze, Sesto Fiorentino, Italy

2. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Unità di Ricerca Università di Firenze, Florence, Italy

3. Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK

Abstract

The myosin motors in resting skeletal muscle are folded back against their tails in the thick filament in a conformation that makes them unavailable for binding to actin. When muscles are activated, calcium binding to troponin leads to a rapid change in the structure of the actin-containing thin filaments that uncovers the myosin binding sites on actin. Almost as quickly, myosin motors leave the folded state and move away from the surface of the thick filament. To test whether motor unfolding is triggered by the availability of nearby actin binding sites, we measured changes in the x-ray reflections that report motor conformation when muscles are activated at longer sarcomere length, so that part of the thick filaments no longer overlaps with thin filaments. We found that the intensity of the M3 reflection from the axial repeat of the motors along the thick filaments declines almost linearly with increasing sarcomere length up to 2.8 µm, as expected if motors in the nonoverlap zone had left the folded state and become relatively disordered. In a recent article in JGP, Squire and Knupp challenged this interpretation of the data. We show here that their analysis is based on an incorrect assumption about how the interference subpeaks of the M3 reflection were reported in our previous paper. We extend previous models of mass distribution along the filaments to show that the sarcomere length dependence of the M3 reflection is consistent with <10% of no-overlap motors remaining in the folded conformation during active contraction, confirming our previous conclusion that unfolding of myosin motors on muscle activation is not due to the availability of local actin binding sites.

Funder

Fondo per gli Investimenti della Ricerca di Base

Progetti di Rilevante Interesse Nazionale-Ministero dell’Istruzione, dell’Università e della Ricerca

Telethon

Fondazione Cassa di Risparmio di Firenze

UK Medical Research Council

Wellcome Trust

Royal Society

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3