Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction.

Author:

Hille B

Abstract

The properties of Na channels of the node of Ranvier are altered by neutral, amine, and quaternary local anesthetic compounds. The kinetics of the Na currents are governed by a composite of voltage- and time-dependent gating processes with voltage- and time-dependent block of channels by drug. Conventional measurements of steady-state sodium inactivation by use of 50-ms prepulses show a large negative voltage shift of the inactivation curve with neutral benzocaine and with some ionizable amines like lidocaine and tetracaine, but no shift is seen with quaternary OX-572. However, when the experiment is done with repetitive application of a prepulse-testpulse waveform, a shift with the quaternary cations (applied internally) is seen as well. 1-min hyperpolarizations of lidocaine- or tetracaine-treated fibers restore two to four times as many channels to the conducting pool as 50-ms hyperpolarizations. Raising the external Ca++ concentration also has a strong unblocking effect. These manipulations do not relieve block in fibers treated with internal quaternary drugs. The results are interpreted in terms of a single receptor in Na channels for the different drug types. Lipid-soluble drug forms are thought to come and go from the receptor via a hydrophobic region of the membrane, while charged and less lipid-soluble forms pass via a hydrophilic region (the inner channel mouth). The hydrophilic pathway is open only when the gates of the channel are open. Any drug form in the channel increases the probability of closing the inactivation gate which, in effect, is equivalent to a negative shift of the voltage dependence of inactivation.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 1639 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3