Numerical simulation and experimental study on effect of cooling rate on microstructure and strength of nanostructured materials

Author:

Nguyen Hai,Le Duc,Hoang Quyen,Quang Pham

Abstract

In this study, by numerical simulation (finite element method, FEM) and experimental, the cooling rate was investigated by changing the product thickness (20, 3, 2, 1, 0.5 and 0.3) mm of Al based two-phase nanostructured materials casted through a copper mold. The effect of cooling rate on the microstructure and strength of the alloy was studied. The Experimental results showed that the precipitated intermetallic phases have a decreasing size corresponding to the increasing cooling rates by simulation from ~102 K/s to ~104 K/s. The results show that an appropriate cooling rate can improve the microstructure and properties of the alloy. The Abaqus/Standard capability for uncoupled heat transfer analysis was intended to model solid body heat conduction with general, temperature-dependent conductivity; internal energy (including latent heat effects); and quite general convection and radiation boundary conditions. This study describes the basic energy balance, constitutive models, boundary conditions, finite element discretization, and time integration procedures used. The time step used an automatic algorithm through the smallest tolerance. The maximum temperature change was allowed over a period and the increment was adjusted for this parameter, as was the rate of convergence in the non-linear cases. First-order heat transfer elements used the rule of numerical integration with integrated stations located at the corners of the element for thermal capacitance terms. (Jacobian terminology). This approach is particularly effective when there is a strong latent thermal effect. Thus, first - order elements were used in the case of latent heat. The HEATCAP element is available for single - point pooled thermal capacitance modeling. Centralized film loading options between the mold and the casting were specified by the user.

Publisher

Publishing House for Science and Technology, Vietnam Academy of Science and Technology (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3