Seasonal Stream Water Chemistry Response To Long-Term Forestry Drainage And Wildfire: A Case Study In A Part Of The Great Vasyugan Mire

Author:

Kharanzhevskaya Yulia A.1

Affiliation:

1. Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Siberian Research Institute of Agriculture and Peat

Abstract

Recent research suggests that climate change is contributing to rising solute concentrations in streams. This study focuses on assessing the concentrations of major elements, nutrients, and dissolved organic carbon (DOC), and their release through the bog-river system in the taiga zone of Western Siberia. The research was carried out in the northeastern part of the Great Vasyugan Mire (GVM), the largest mire system that impacts the quality of river water in the Ob River basin. By using PCA and cluster analysis, we examined the long-term dynamics of the chemical composition of headwater streams of the GVM affected by drainage and wildfires. Our data from 2015-2022 revealed that the concentrations of Са2+, Mg2+, K+, Na+, and HCO3- in stream water from the drained area of the GVM were, on average, 1.3 times lower than those at the pristine site. Conversely, the  concentrations of NH+4, Fetotal, Cl-, SO42-, NO-3, DOC, and COD were higher, indicating the influence of forestry drainage and the pyrogenic factor. Our findings also demonstrated that the GVM significantly impacts the water chemical composition of small rivers. We observed a close correlation in the concentrations of К+, Na+, Cl-, Fetotal, NH+4, HCO3-, and COD between the GVM and the Gavrilovka River waters. PCA analysis revealed that air temperature influences the concentrations of Са2+, Mg2+, NH4+, NO3-, HCO3-, Fetotal, and DOC in the studied streams, with an inverse correlation with river discharge. The removal of major elements, nutrients, and DOC from the drained area of the GVM was most pronounced in April, being twice as high as in the pristine area. However, the total export from the drainage area of the Gavrilovka in April-September 2022 was 1.3 times lower than in the pristine area, amounting to 8487 kg/km2, with DOC removal at 42%. 

Publisher

Russian Geographical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3