In Silico Study of Ayapana Triplinervis Bioactive Compounds Against Quorum-Sensing System of Pseudomonas Aeruginosa

Author:

Martin King Dave Gloria1,Padilla Krystel Grace Vergara1,Buan Ivy Joyce Arenas1

Affiliation:

1. Department of Chemistry and Environmental Science, College of Arts and Sciences, Nueva Ecija University of Science and Technology, Cabanatuan City, Nueva Ecija, 3100, Philippines.

Abstract

Quorum sensing (QS) is the way bacterial cells communicate can trigger or regulate pathogenicity in Pseudomonas aeruginosa. Targeting the quorum sensing system with the help of docking algorithms can reduce the cost and time to screen for potential anti-quorum sensing drugs. Ayapana triplinervis, an ethnobotanical from the Philippines is a potential source of bioactive compounds to inhibit quorum sensing. This study shows potential compounds present in Ayapana triplinervis that could disrupt the quorum sensing system in Pseudomonas aeruginosa with the use of molecular docking simulations. Selection and identification of bioactive compounds found in Ayapana triplinervis was based from previous metabolite screening reports. This study utilizes virtual screening in order to identify which among the compounds to be the potent quorum sensing inhibitor. The molecular structures of the thirty-one identified bioactive compounds were obtained from PubChem (nih.gov) in SDF file. These molecular structures of the compounds from Ayapana triplinervis served as the ligands and docked to the active site of the PqsR, PqsD, and LasR of the Pseudomonas aeruginosa using Autodock Vina algorithms. The bioactive compounds were virtually screened using Autodock Vina to determine the binding affinity of each compounds to the active site of PqsR, PqsD, and LasR. Compounds with a low binding affinity has a potential to be developed as anti-quorum agent to Pseudomonas aeruginosa. Results showed that out of the 31 compounds, caryophyllene, trans-nerolidol, 2-(Isobutyryloxy)-Thymol methyl ether, β-elemene, and cyperadiene have successfully inhibited the PqsR, PqsD, and LasR based from the computed binding affinity. 2- (Isobutyryloxy)-Thymol methyl ether formed hydrogen bond in the active site of all the proteins related governing the quorum sensing process of Pseudomonas aeruginosa, making the compound a candidate drug to disrupt the signaling pathway of the system.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3