Effect of Talatisamine and its Derivate 14-O-Benzoyltalatisamine on Functional State of Rat Liver and Heart Mitochondria

Author:

Muratova Dilnoza Kh.1ORCID,Ergashev Nurali A.2ORCID,Asrarov Muzaffar I.2ORCID

Affiliation:

1. 1Department of Biophysics, National University of Uzbekistan named after Mirzo Ulugbek., Tashkent, Uzbekistan.

2. 2Institute of Biophysics and Biochemistry, National University of Uzbekistan named after Mirzo Ulugbek., Tashkent, Uzbekistan.

Abstract

Dysfunction of the mitochondria of various tissues causes the development of most pathological processes, including ischemia. In recent years, great attention has been paid to the use of plant biologically active substances in the prevention and treatment of pathological processes related to mitochondrial dysfunction. This is very relevant in relation to ischemic diseases and is of scientific and practical importance in the search for new pharmacological agents that correct the functions of damaged mitochondria for their treatment. The mitochondrial permeability transition pore (mPTP) actively participates in the regulation of mitochondrial functions, in the development of various pathological conditions and, at the same time, targets for various drugs and some biologically active substances. In vitro experiments evaluated the effects of alkaloids talatisamine and 14-O-benzoyltalatisamine on rat liver and heart Ca2+-dependent mPTP and lipid peroxidation (LPO) induced by Fe2+/ascorbate system. The investigated diterpenealkaloids inhibited the opening of the Ca2+-dependent mPTP in the membranes of rat liver and heart mitochondria. It was found that 14-O-benzoyltalatizamine inhibits the Ca2+-dependent conductance pore of rat liver and heart mitochondria more strongly than talatisamine. To compare the effects of 14-O-benzoyltalatisamine on rat liver and heart mPTP, concentrations from 1 μM to 200 μM were investigated. At these concentrations, liver mPTP was reliably inhibited by 10% to 81% and heart mPTP by 3.6% to 71.5% relative to control. The high sensitivity of diterpene alkaloids to the Ca2+-dependent permeability transition pore of liver mitochondria compared to heart mitochondria indicates their tissue specificity. The investigated alkaloids exhibited antioxidant properties by inhibiting Fe2+/ascorbate-induced mitochondrial suppression (LPO process) and MDA formation in membranes. LPO induced by Fe2+/ascorbate system in mitochondrial membranes was more actively inhibited by 14-O-benzoyltalatisamine. According to the results of the research, acylation of the hydroxyl group at the C-14 position of talatisamine by benzoyl chloride caused a rise in molecular activity of the derivative due to the introduction of the benzoyl group.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3