Bayesian Network Model for a Zimbabwean Cybersecurity System

Author:

Kabanda Gabriel1ORCID

Affiliation:

1. Atlantic International University 900 Fort Street Mall 40 Honolulu, Hawaii 96813, USA

Abstract

The purpose of this research was to develop a structure for a network intrusion detection and prevention system based on the Bayesian Network for use in Cybersecurity. The phenomenal growth in the use of internet-based technologies has resulted in complexities in cybersecurity subjecting organizations to cyberattacks. What is required is a network intrusion detection and prevention system based on the Bayesian Network structure for use in Cybersecurity. Bayesian Networks (BNs) are defined as graphical probabilistic models for multivariate analysis and are directed acyclic graphs that have an associated probability distribution function. The research determined the cybersecurity framework appropriate for a developing nation; evaluated network detection and prevention systems that use Artificial Intelligence paradigms such as finite automata, neural networks, genetic algorithms, fuzzy logic, support-vector machines or diverse data-mining-based approaches; analysed Bayesian Networks that can be represented as graphical models and are directional to represent cause-effect relationships; and developed a Bayesian Network model that can handle complexity in cybersecurity. The theoretical framework on Bayesian Networks was largely informed by the NIST Cybersecurity Framework, General deterrence theory, Game theory, Complexity theory and data mining techniques. The Pragmatism paradigm used in this research, as a philosophy is intricately related to the Mixed Method Research (MMR). A mixed method approach was used in this research, which is largely quantitative with the research design being a survey and an experiment, but supported by qualitative approaches where Focus Group discussions were held. The performance of Support Vector Machines, Artificial Neural Network, K-Nearest Neighbour, Naive-Bayes and Decision Tree Algorithms was discussed. Alternative improved solutions discussed include the use of machine learning algorithms specifically Artificial Neural Networks (ANN), Decision Tree C4.5, Random Forests and Support Vector Machines (SVM).

Publisher

Oriental Scientific Publishing Company

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference37 articles.

1. ALJEBREEN, M.J., (2018). Towards Intelligent Intrusion Detection Systems for Cloud Computing, Ph.D. Dissertation, Florida Institute of Technology, 2018.

2. ALANEZI, A.A., (2014). Development of an Orally Disintegrating Mini-Tablet (ODMTs) Containing Metoclopramide HCl to Enhance Patient Compliance, Master of Science Thesis, University of Toledo, 2014, http://rave.ohiolink.edu/etdc/view?acc_num=mco1417861431.

3. ALMUTAIRI, A., (2016). Improving intrusion detection systems using data mining techniques, Ph.D Thesis, Loughborough University, 2016.

4. BANDE S., (2018).Legislating against Cyber Crime in Southern African Development Community: Balancing International Standards with Country-Specific Specificities. International Journal of Cyber Criminology Volume 12 Issue 1 January-June 2018.

5. BOLZONI, D., (2009). Revisiting Anomaly-based Network Intrusion Detection Systems, Ph.D Thesis, University of Twente, The Netherlands, ISBN: 978-90-365-2853-5, ISSN: 1381-3617, DOI: 10.3990/1.9789036528535,

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3