Author:
Gauthier Marie-Soleil,Favier Roland,Lavoie Jean-Marc
Abstract
The aim of the study was to characterize the time course of the development of high-fat diet-induced hepatic steatosis and its relation to body fat accretion and changes in plasma lipid profile. Female Sprague–Dawley rats were high-fat fed (HF; 42%, kJ) for 1, 2, 4, 6, 12 and 16 weeks and compared to standard fed rats (SD). Data obtained from HF rats were further analysed by classifying the animals into obesity-prone and obesity-resistant. In HF rats, liver lipid content increased rapidly by approximately 200% during the first 2 weeks, decreased almost to baseline levels between weeks 2 and 6, and re-increased by 17% between weeks 6 and 16 (P<0·05). Body weight, body fat accretion, plasma leptin, NEFA and glycerol concentrations were higher in HF than in SD rats (P<0·05). These higher values were established in 2 weeks and the differences between the groups did not further enlarge from weeks 2 to 16. Obesity-prone rats depicted higher body weight and body fat accretion than obesity-resistant and SD rats. Surprisingly, however, liver lipid content was the same in obesity-prone as in obesity-resistant rats as they were both higher than in SD rats (weeks 2 and 16;P<0·05). Our data support the hypothesis that the liver acts as a systemic buffer, largely increasing its lipid content in the early stage of high-fat feeding. Our results also suggest that the development of non-alcoholic hepatic steatosis is more linked to dietary fat ingestion than to body weight gain.
Publisher
Cambridge University Press (CUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献