Outgassing Composition of the Murchison Meteorite: Implications for Volatile Depletion of Planetesimals and Interior-atmosphere Connections for Terrestrial Exoplanets

Author:

Thompson Maggie A.ORCID,Telus MyriamORCID,Edwards Graham HarperORCID,Schaefer LauraORCID,Dhaliwal Jasmeet,Dreyer BrianORCID,Fortney Jonathan J.ORCID,Kim Kyle

Abstract

Abstract Outgassing is a central process during the formation and evolution of terrestrial planets and their atmospheres both within and beyond the solar system. Although terrestrial planets’ early atmospheres likely form via outgassing during planetary accretion, the connection between a planet’s bulk composition and its initial atmospheric properties is not well understood. One way to inform this connection is to analyze the outgassing compositions of meteorites, and in particular carbonaceous chondrites, because they are some of the most volatile-rich, primitive materials (in terms of their bulk compositions) that are available for direct study. In addition, they may serve as compositional analogs for the building block materials of terrestrial planets in our solar system and around other Sun-like stars. This study builds upon previous outgassing experiments that monitored the abundances of volatile species (e.g., H2O, CO, and CO2) released from the Murchison meteorite. To gain a more complete understanding of Murchison’s outgassing composition, we perform a series of heating experiments under atmospheric pressure (1 bar) and vacuum (∼10−9 bar) conditions on samples of the Murchison meteorite and subsequent bulk element analysis to inform the outgassing trends of a suite of major elements in Murchison (e.g., Fe, Mg, Zn, and S). Under both pressure conditions, sulfur outgases significantly at the highest temperatures (∼800°C–1000 °C). For the samples heated under vacuum conditions, we also detect outgassing of zinc. Combined with prior outgassing experiments, this study provides important insights into the volatile depletion patterns of undifferentiated planetesimals and the early outgassing compositions of terrestrial exoplanets.

Funder

NASA

NASA Emerging Worlds

NASA Planetary Science Early Career Award

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3