Sensitivity Testing of Stereophotoclinometry for the OSIRIS-REx Mission. I. The Accuracy and Errors of Digital Terrain Modeling

Author:

Palmer Eric E.ORCID,Weirich John R.ORCID,Gaskell Robert W.ORCID,Lambert Diane,Campbell TannerORCID,Drozd Kris,Barnouin Olivier S.ORCID,Daly Michael G.ORCID,Getzandanner KennethORCID,Kidd John N.ORCID,Adam Coralie D.ORCID,Lauretta Dante S.ORCID

Abstract

Abstract Stereophotoclinometry (SPC) was the prime method of shape modeling for NASA’s OSIRIS-REx mission to asteroid Bennu. Here we describe the extensive testing conducted before launch to certify SPC as NASA Class B flight software, which not only validated SPC for operational use but also quantified the accuracy of this technique. We used a computer-generated digital terrain model (DTM) of a synthetic asteroid as the truth input to render simulated truth images per the planned OSIRIS-REx observing campaign. The truth images were then used as input to SPC to create testing DTMs. Imaging sets, observational parameters, and processing techniques were varied to evaluate their effects on SPC's performance and their relative importance for the quality of the resulting DTMs. We show that the errors in accuracy for SPC models are of the order of the source images’ smallest pixel sizes and that a DTM can be created at any scale, provided there is sufficient imagery at that scale. Uncertainty in the spacecraft’s flight path has minimal impact on the accuracy of SPC models. Subtraction between two DTMs (truth and simulated) is an effective approach for measuring error but has limitations. Comparing the simulated truth images with images rendered from the SPC-derived DTMs provides an excellent metric for DTM quality at smaller scales and can also be applied in flight by using real images of the target. SPC has limitations near steep slopes (e.g., the sides of boulders), leading to height errors of more than 30%. This assessment of the accuracy and sensitivity of SPC provides confidence in this technique and lessons that can be applied to future missions.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3