Uranus’s Influence on Neptune’s Exterior Mean-motion Resonances

Author:

Graham SeveranceORCID,Volk KathrynORCID

Abstract

Abstract Neptune’s external mean-motion resonances play an important role in sculpting the observed population of trans-Neptunian objects (TNOs). The population of scattering TNOs is known to “stick” to Neptune's resonances while evolving in semimajor axis (a), though simulations show that resonance sticking is less prevalent at a ≳ 200–250 au. Here we present an extensive numerical exploration of the strengths of Neptune's resonances for scattering TNOs with perihelion distances q = 33 au. We show that the drop-off in resonance sticking for the large a scattering TNOs is not a generic feature of scattering dynamics but can instead be attributed to the specific configuration of Neptune and Uranus in our solar system. In simulations with just Uranus removed from the giant planet system, Neptune's resonances are strong in the scattering population out to at least ∼300 au. Uranus and Neptune are near a 2:1 period ratio, and the variations in Neptune's orbit resulting from this near-resonance are responsible for destabilizing Neptune's resonances for high-e TNO orbits beyond the ∼20:1 resonance at a ≈ 220 au. Direct interactions between Uranus and the scattering population are responsible for slightly weakening Neptune's closer-in resonances. In simulations where Neptune and Uranus are placed in their mutual 2:1 resonance, we see almost no stable libration of scattering particles in Neptune's external resonances. Our results have important implications for how the strengths of Neptune's distant resonances varied during the epoch of planet migration when the Neptune–Uranus period ratio was evolving. These strength variations likely affected the distant scattering, resonant, and detached TNO populations.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3