Interstellar Comets from Post-main-sequence Systems as Tracers of Extrasolar Oort Clouds

Author:

Levine W. GarrettORCID,Taylor Aster G.ORCID,Seligman Darryl Z.ORCID,Hoover Devin J.ORCID,Jedicke RobertORCID,Bergner Jennifer B.ORCID,Laughlin Gregory P.ORCID

Abstract

Abstract Interstellar small bodies are unique probes into the histories of exoplanetary systems. One hypothesized class of interlopers are “Jurads,” exocomets released into the Milky Way during the post-main-sequence as the thermally pulsing asymptotic giant branch (AGB) host stars lose mass. In this study, we assess the prospects for the Legacy Survey of Space and Time (LSST) to detect a Jurad and examine whether such an interloper would be observationally distinguishable from exocomets ejected during the (pre-)main-sequence. Using analytic and numerical methods, we estimate the fraction of exo–Oort Cloud objects that are released from 1–8 M stars during post-main-sequence evolution. We quantify the extent to which small bodies are altered by the increased luminosity and stellar outflows during the AGB, finding that some Jurads may lack hypervolatiles and that stellar winds could deposit dust that covers the entire exocomet surface. Next, we construct models of the interstellar small body reservoir for various size–frequency distributions and examine the LSST’s ability to detect members of those hypothesized populations. Combining these analyses, we highlight the joint constraints that the LSST will place on power-law size–frequency distribution slopes, characteristic sizes, and the total mass sequestered in the minor planets of exo–Oort Clouds. Even with the LSST’s increased search volume compared to contemporary surveys, we find that detecting a Jurad is unlikely but not infeasible given the current understanding of (exo)planet formation.

Funder

U.S. Department of Defense

National Science Foundation

National Aeronautics and Space Administration

NASA ∣ Goddard Space Flight Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3