Negative-energy Waves in the Vertical Threads of a Solar Prominence

Author:

Wang JinchengORCID,Li DongORCID,Li ChuanORCID,Hou YijunORCID,Xue ZhikeORCID,Xu ZheORCID,Yang LihengORCID,Li QiaolingORCID

Abstract

Abstract Solar prominences, intricate structures on the Sun’s limb, have been a subject of fascination owing to their threadlike features and dynamic behaviors. Utilizing data from the New Vacuum Solar Telescope, Chinese Hα Solar Explorer, and Solar Dynamics Observatory, this study investigates the transverse swaying motions observed in the vertical threads of a solar prominence during its eruption onset on 2023 May 11. The transverse swaying motions were observed to propagate upward, accompanied by upflowing materials at an inclination of 31° relative to the plane of the sky. These motions displayed small-amplitude oscillations with corrected velocities of around 3–4 km s−1 and periods of 13–17 minutes. Over time, the oscillations of swaying motion exhibited an increasing pattern in displacement amplitudes, oscillatory periods, and projected velocity amplitudes. Their phase velocities are estimated to be about 26–34 km s−1. An important finding is that these oscillations’ phase velocities are comparable to the upward flow velocities, measured to be around 30–34 km s−1. We propose that this phenomenon is associated with negative-energy wave instabilities, which require comparable velocities of the waves and flows, as indicated by our findings. This phenomenon may contribute to the instability and observed disruption of the prominence. By using prominence seismology, the Alfvén speed and magnetic field strength of the vertical threads have been estimated to be approximately 21.5 km s−1 and 1–3G, respectively. This study reveals the dynamics and magnetic properties of solar prominences, contributing to our understanding of their behavior in the solar atmosphere.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Natural Science Foundation of Yunnan Province

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3