TRANSLIENT: Detecting Transients Resulting from Point-source Motion or Astrometric Errors

Author:

Springer Ofer,Ofek Eran O.ORCID,Zackay BarakORCID,Konno Ruslan,Sharon Amir,Nir GuyORCID,Rubin Adam,Haddad Asaf,Friedman Jonathan,Schein-Lubomirsky Leora,Aizenberg Iakov,Krassilchtchikov Alexander,Gal-Yam AvishayORCID

Abstract

Abstract Detection of moving sources over a complicated background is important for several reasons. First is measuring the astrophysical motion of the source. Second is that such motion resulting from atmospheric scintillation, color refraction, or astrophysical reasons is a major source of false alarms for image-subtraction methods. We extend the Zackay, Ofek, and Gal-Yam image-subtraction formalism to deal with moving sources. The new method, named the translient (translational transient) detector, applies hypothesis testing between the hypothesis that the source is stationary and that the source is moving. It can be used to detect source motion or to distinguish between stellar variability and motion. For moving source detection, we show the superiority of translient over the proper image subtraction, using the improvement in the receiver-operating characteristic curve. We show that in the small translation limit, translient is an optimal detector of point-source motion in any direction. Furthermore, it is numerically stable, fast to calculate, and presented in a closed form. Efficient transient detection requires both the proper image-subtraction statistics and the translient statistics: When the translient statistic is higher, then the subtraction residual is likely due to motion. We test our algorithm both on simulated data and on real images obtained by the Large Array Survey Telescope. We demonstrate the ability of translient to distinguish between motion and variability, which has the potential to reduce the number of false alarms in transients detection. We provide the translient implementation in Python and MATLAB.

Funder

Israel Science Foundation

United States - Israel Binational Agricultural Research and Development Fund

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3