On the Compatibility of Ground-based and Space-based Data: WASP-96 b, an Example*

Author:

Yip Kai HouORCID,Changeat QuentinORCID,Edwards BillyORCID,Morvan MarioORCID,Chubb Katy L.ORCID,Tsiaras AngelosORCID,Waldmann Ingo P.ORCID,Tinetti GiovannaORCID

Abstract

Abstract The study of exoplanetary atmospheres relies on detecting minute changes in the transit depth at different wavelengths. To date, a number of ground- and space-based instruments have been used to obtain transmission spectra of exoplanets in different spectral bands. One common practice is to combine observations from different instruments in order to achieve a broader wavelength coverage. We present here two inconsistent observations of WASP-96 b, one by the Hubble Space Telescope (HST) and the other by the Very Large Telescope (VLT). We present two key findings in our investigation: (1) a strong water signature is detected via the HST WFC3 observations and (2) a notable offset in transit depth (>1100 ppm) can be seen when the ground-based and space-based observations are combined. The discrepancy raises the question of whether observations from different instruments could indeed be combined. We attempt to align the observations by including an additional parameter in our retrieval studies but are unable to definitively ascertain that the aligned observations are indeed compatible. The case of WASP-96 b signals that compatibility of instruments should not be assumed. While wavelength overlaps between instruments can help, it should be noted that combining data sets remains risky business. The difficulty of combining observations also strengthens the need for next-generation instruments that possess broader spectral coverage.

Funder

ERC

STFC

ASI

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3