Circumstellar Disk Accretion Across the Lagoon Nebula: The Influence of Environment and Stellar Mass

Author:

Venuti LauraORCID,Cody Ann MarieORCID,Beccari GiacomoORCID,Rebull Luisa M.ORCID,Irwin Michael J.ORCID,Thanvantri Apoorva,Thanvantri Sowmya,Alencar Silvia H. P.ORCID,Leal Clara O.,Barentsen GeertORCID,Drew Janet E.ORCID,Howell Steve B.ORCID

Abstract

Abstract Pre-main-sequence disk accretion is pivotal for determining the final stellar properties and the early conditions for close-in planets. We aim to establish the impact of internal (stellar mass) and external (radiation field) parameters on the disk evolution in the Lagoon Nebula massive star-forming region. We employ simultaneous u, g, r, i, Hα time-series photometry, archival infrared data, and high-precision K2 light curves to derive the stellar, disk, and accretion properties for 1012 Lagoon Nebula members. We estimate that of all young stars in the Lagoon Nebula, 34%–37% have inner disks traceable down to ∼12 μm, while 38%–41% are actively accreting. We detect disks ∼1.5 times more frequently around G, K, and M stars than around higher-mass stars, which appear to deplete their inner disks on shorter timescales. We find tentative evidence for a faster disk evolution in the central regions of the Lagoon Nebula, where the bulk of the O/B population is located. Conversely, disks appear to last longer at the nebula outskirts, where the measured fraction of disk-bearing stars tends to exceed that of accreting and disk-free stars. The derived mass accretion rates show a nonuniform dependence on stellar mass between ∼0.2 and 5 M . In addition, the typical accretion rates appear to differ across the Lagoon Nebula extension, with values twice lower in the core region than at its periphery. Finally, we detect tentative radial density gradients in the surface accretion shocks, leading to lags in the appearance of light curve brightness features as a function of wavelength that can amount to ∼7%–30% of the rotation period.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Origin of extended main-sequence turn-off in open cluster NGC 2355;Monthly Notices of the Royal Astronomical Society;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3